The Rectified Gaussian Distribution
نویسندگان
چکیده
A simple but powerful modification of the standard Gaussian distribution is studied. The variables of the rectified Gaussian are constrained to be nonnegative, enabling the use of nonconvex energy functions. Two multimodal examples, the competitive and cooperative distributions, illustrate the representational power of the rectified Gaussian. Since the cooperative distribution can represent the translations of a pattern, it demonstrates the potential of the rectified Gaussian for modeling pattern manifolds.
منابع مشابه
A Structured Variational Auto-encoder for Learning Deep Hierarchies of Sparse Features
In this note we present a generative model of natural images consisting of a deep hierarchy of layers of latent random variables, each of which follows a new type of distribution that we call rectified Gaussian. These rectified Gaussian units allow spike-and-slab type sparsity, while retaining the differentiability necessary for efficient stochastic gradient variational inference. To learn the ...
متن کاملRectified Gaussian distributions and the formation of local filters from video data
We investigate the use of an unsupervised artificial neural network to form a sparse representation of the underlying causes in a data set. By using fixed lateral connections that are derived from the Rectified Generalised Gaussian distribution, we form a network that is capable of identifying multiple cause structure in visual data and grouping similar causes together on the output response of...
متن کاملRectified Gaussian Scale Mixtures and the Sparse Non-Negative Least Squares Problem
In this paper, we develop a Bayesian evidence maximization framework to solve the sparse non-negative least squares problem (S-NNLS). We introduce a family of scale mixtures referred as to Rectified Gaussian Scale Mixture (RGSM) to model the sparsity enforcing prior distribution for the signal of interest. Through proper choice of the mixing density, the R-GSM prior encompasses a wide variety o...
متن کاملBayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions
In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997